یکی از شرکتهای بزرگ فضانوردی، تصمیم به ساخت یک مرکز کنترل بر روی کره ماه گرفته است. برای این منظور باید یک کابل ارتباطی به دور ماه کشیده شود. پس از انجام این کار، مهندسان متوجه میشوند که طول کابل مورد استفاده، یک متر کم است. در جلسه فوقالعادهای که برای حل این مشکل برگزار گردید، تصمیم بر آن شد که کابل در شکاف عمیقتری قرار بگیرد.
عمق شکاف چقدر باید باشد تا کمبود یک متر کابل جبران شود؟
توضیح: فرض کنید قطر ماه برابر با ۳۴۷۶۰۰۰ متر است.
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
↓↓↓↓
پاسخ معمای مرکز کنترلی بر روی ماه :
بسیار خب! پیش از هر چیز باید اعلام کنیم که نیازی به محاسبه قطر ماه برای حل کردن معما وجود ندارد. به عبارت دیگر، قطر ماه یک نکته گمراه کننده محسوب میشود. فرض میکنیم شعاع ماه برابر با r است. در نتیجه طول کابل برابر است با 2×(Pi×(r-1.
فرض میکنیم عمق شکافی که باید ایجاد شود X متر است. پس طول کابل باید برابر با محیط دایره ایجاد شده توسط شکاف باشد. یعنی 2×(Pi×(r-1 باید با 2×(Pi×(r-X برابر باشد. با حل کردن این معادله خواهیم داشت: X = 1/2(Pi) = 0.159